SCAN: Learning Abstract Hierarchical Compositional Visual Concepts

نویسندگان

  • Irina Higgins
  • Nicolas Sonnerat
  • Loïc Matthey
  • Arka Pal
  • Christopher Burgess
  • Matthew Botvinick
  • Demis Hassabis
  • Alexander Lerchner
چکیده

The natural world is infinitely diverse, yet this diversity arises from a relatively small set of coherent properties and rules, such as the laws of physics or chemistry. We conjecture that biological intelligent systems are able to survive within their diverse environments by discovering the regularities that arise from these rules primarily through unsupervised experiences, and representing this knowledge as abstract concepts. Such representations possess useful properties of compositionality and hierarchical organisation, which allow intelligent agents to recombine a finite set of conceptual building blocks into an exponentially large set of useful new concepts. This paper describes SCAN (Symbol-Concept Association Network), a new framework for learning such concepts in the visual domain. We first use the previously published β-VAE (Higgins et al., 2017a) architecture to learn a disentangled representation of the latent structure of the visual world, before training SCAN to extract abstract concepts grounded in such disentangled visual primitives through fast symbol association. Our approach requires very few pairings between symbols and images and makes no assumptions about the choice of symbol representations. Once trained, SCAN is capable of multimodal bi-directional inference, generating a diverse set of image samples from symbolic descriptions and vice versa. It also allows for traversal and manipulation of the implicit hierarchy of compositional visual concepts through symbolic instructions and learnt logical recombination operations. Such manipulations enable SCAN to invent and learn novel visual concepts through recombination of the few learnt concepts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scan: Learning Hierarchical Compositional Visual Concepts

The seemingly infinite diversity of the natural world arises from a relatively small set of coherent rules, such as the laws of physics or chemistry. We conjecture that these rules give rise to regularities that can be discovered through primarily unsupervised experiences and represented as abstract concepts. If such representations are compositional and hierarchical, they can be recombined int...

متن کامل

Scan: Learning Hierarchical Compositional Visual Concepts

The seemingly infinite diversity of the natural world arises from a relatively small set of coherent rules, such as the laws of physics or chemistry. We conjecture that these rules give rise to regularities that can be discovered through primarily unsupervised experiences and represented as abstract concepts. If such representations are compositional and hierarchical, they can be recombined int...

متن کامل

Scan: Learning Hierarchical Compositional Visual Concepts

The seemingly infinite diversity of the natural world arises from a relatively small set of coherent rules, such as the laws of physics or chemistry. We conjecture that these rules give rise to regularities that can be discovered through primarily unsupervised experiences and represented as abstract concepts. If such representations are compositional and hierarchical, they can be recombined int...

متن کامل

One-shot learning by inverting a compositional causal process

People can learn a new visual class from just one example, yet machine learning algorithms typically require hundreds or thousands of examples to tackle the same problems. Here we present a Hierarchical Bayesian model based on compositionality and causality that can learn a wide range of natural (although simple) visual concepts, generalizing in human-like ways from just one image. We evaluated...

متن کامل

Generalized Lattices Express Parallel Distributed Concept Learning [FUZZ4316]

Concepts have been expressed mathematically as propositions in a distributive lattice. A more comprehensive formulation is that of a generalized lattice, or category, in which the concepts are related in hierarchical fashion by lattice-like links called concept morphisms. A concept morphism describes how a more abstract concept is used within a more specialized concept, as the color ”red” is us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1707.03389  شماره 

صفحات  -

تاریخ انتشار 2017